138 research outputs found

    Approche par la théorie du calcul à la rupture du dimensionnement au feu de panneaux de grande hauteur

    Get PDF
    Principalement utilisés dans les bâtiments industriels, les panneaux de grande hauteur constitués de bandeaux horizontaux sont des ouvrages en béton armé pour lesquels l’analyse de leur comportement au feu requiert des traitements plus sophistiqués que les ouvrages courants. En effet, outre la détérioration des propriétés mécaniques des matériaux, et notamment de leur résistance, le feu induit des déformations thermiques susceptibles de provoquer des changements de géométrie non négligeables en raison des grandes dimensions de ces ouvrages. Dans le but de modéliser correctement le problème et d’examiner les points particuliers sur lesquels il convient de focaliser l’étude, une approche de type calcul à la rupture a été choisie. Ce type de méthode présente l’avantage de conduire de façon rigoureuse à la détermination des charges limites sans prise en compte de l’histoire de chargement, c’est-à-dire en s’affranchissant des difficultés liées à l’utilisation de lois de comportement non linéaires de type plasticité ou endommagement. Présentant l’originalité d’associer la prise en compte de la dégradation des caractéristiques mécaniques en conditions d’incendie au raisonnement du calcul à la rupture, des critères de rupture spécifiques aux plaques en béton armé soumises à des efforts membranaires et de flexion sont développés. Ceux-ci sont ensuite appliqués à la géométrie déformée de la structure étudiée afin de prendre en compte les effets du changement de géométrie. Afin d’évaluer la pertinence de la démarche, les résultats obtenus sont alors confrontés soit à ceux issus de modélisations de type calcul de béton armé classique, soit à des résultats expérimentaux disponibles dans la littérature. Cette contribution présentera et mettra en œuvre l’ensemble de la démarche décrite ci-dessus sur l’exemple simplifié d’un panneau de grande hauteur soumis à son poids propre et à un chargement thermique de type incendie, modélisé comme une poutre élancée

    Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: Role of mitochondria and X-linked inhibitor of apoptosis protein

    Get PDF
    Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP

    Intact cord resuscitation in newborns with congenital diaphragmatic hernia: insights from a lamb model

    Get PDF
    IntroductionCongenital diaphragmatic hernia (CDH) is a rare condition characterized by pulmonary hypoplasia, vascular dystrophy, and pulmonary hypertension at birth. Validation of the lamb model as an accurate representation of human CDH is essential to translating research findings into clinical practice and understanding disease mechanisms. This article emphasizes the importance of validating the lamb model to study CDH pathogenesis and develop innovative therapeutics.Material and methodsAt 78 days of gestation, the fetal lamb's left forelimb was exposed through a midline laparotomy and hysterotomy, and a supra diaphragmatic thoracotomy was performed to allow the digestive organs to ascend into the thoracic cavity. At 138 ± 3 days of gestation, lambs were delivered via a cesarean section; then, with umbilical cord intact during 1 hour, the lambs were mechanically ventilated with gentle ventilation in a pressure-controlled mode for 2 h.ResultsCDH lambs exhibited a lower left lung-to-body weight ratio of 5.3 (2.03), p < 0.05, and right lung-to-body weight ratio of 8.2 (3.1), p < 0.05. They reached lower Vt/kg (tidal volume per kg) during the course of the resuscitation period with 1.2 (0.7) ml/kg at 10 min and 3 (1.65) ml/kg at 60 min (p < 0.05). Compliance of the respiratory system was lower in CDH lambs with 0.5 (0.3) ml/cmH2O at 60 min (p < 0.05) and 0.9 (0.26) ml/cmH2O at 120 min (p < 0.05). Differences between pre- and postductal SpO2 were higher with 15.1% (21.4%) at 20 min and 6.7% (14.5%) at 80 min (p < 0.05). CDH lambs had lower differences between inspired and expired oxygen fractions with 4.55% (6.84%) at 20 min and 6.72% (8.57%) at 60 min (p < 0.05). CDH lamb had lower left ventricle [2.73 (0.5) g/kg, p < 0.05] and lower right ventricle [0.69 (0.8), p < 0.05] to left ventricle ratio.DiscussionCDH lambs had significantly lower tidal volume than control lambs due to lower compliance of the respiratory system and higher airway resistance. These respiratory changes are characteristic of CDH infants and are associated with higher mortality rates. CDH lambs also exhibited pulmonary hypertension, pulmonary hypoplasia, and left ventricle hypoplasia, consistent with observations in human newborns. To conclude, our lamb model successfully provides a reliable representation of CDH and can be used to study its pathophysiology and potential interventions

    Prose libre

    Get PDF

    The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants

    Get PDF
    ​The LInker of Nucleoskeleton and Cytoskeleton (LINC) complex is an evolutionary well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data support its function in nuclear morphology and meiosis, its implication in chromatin organisation has not been studied in plants. Here 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the model plant Arabidopsis thaliana, in which heterochromatin cluster in conspicuous chromatin domains called chromocentres. Chromocentres form a repressive chromatin environment contributing to transcriptional silencing of repeated sequences, a general mechanism needed for genome stability. Quantitative measurements of 3D position of chromocentres indicate their close proximity to the nuclear periphery but that their position varies with nuclear volume and can be altered in specific mutants affecting the LINC complex. Finally we propose that the plant LINC complex contributes to proper heterochromatin organisation and positioning at the nuclear periphery, since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    High temperature flow synthesis of iron oxide nanoparticles : size tuning via reactor engineering

    Get PDF
    Batch thermal decomposition syntheses of iron oxide nanoparticles (IONPs) provide precise control of particle properties, but their scalability and reproducibility is challenging. This is addressed in this work via a versatile high temperature flow reactor with adjustable temperature profiles through three individual stages operated between 180 °C and 280 °C. The tuneable temperature profiles in combination with self-seeded growth methods made it possible to synthesise IONPs between 2 and 17 nm (a size increase that corresponds to a >600 fold particle volume increase) at production rates of several gIONP per day. The precursor solutions contained only iron(III) acetylacetonate in a polyol solvent and no nucleation or growth inhibitors, oxidation or reducing agents, ligands or any other additives . This broad size range covers most biomedical applications and is of special interest for T1 MRI contrast agents (2–5 nm), as well as for magnetic hyperthermia cancer therapy (>10 nm). The potential of the IONPs produced was demonstrated by their high longitudinal relaxivity >16 mM−1 s−1 at a transversal/longitudinal relaxivity ratio <2.5 (small IONPs) and specific absorption rates increasing with the IONP size up to180 W/gFe. In addition, the polyol method employed allowed for simple ligand exchange with biocompatible sodium tripolyphosphate to make the IONPs stable in water, thus rendering them suitable for biomedical applications. The continuous high temperature process presented shows how to control the particle size not via the chemistry (e.g., chemical additives affecting the particle size through the surface chemistry), but engineering parameters, i.e., reactor temperature profiles, reagent addition sequences and seeded growth strategies

    AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine

    Get PDF
    International audienceAGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
    corecore